2. Figure shows the orientation of two vectors u and v in the XY plane.

If
$$\mathbf{u} = \mathbf{a}\hat{i} + \mathbf{b}\hat{j}$$
 and $\mathbf{v} = \mathbf{p}\hat{i} + \mathbf{q}\hat{j}$

Which of the following is correct?

- 1) a, b, p and q are all positive.
- s and p are positive while b and q are negative.
- a, q and b are positive while p is negative.
- a, p and b are positive while q is negative.

Sol. 4) a, p and b are positive while q is negative.

Main concept used: Sign of a, b, p and q are the sign of their resolving components in the XY direction. Explanation: Components along X and Y axis of the vector \bar{u} are both +X and Y direction, so a, b are positive.

Now if we resolve \bar{v} its X component is in the +ve X direction but Y component will be in -ve Y direction.

Hence, a, b and p are positive but q is negative.